14 novembre 2011

TEDxBologna - Sergio Focardi - L'E-cat e la fusione nucleare fredda con il Nichel e l'Idrogeno

Presentazione della nascita della tecnologia dell'e-cat da parte del Professore Emerito della Università di Bologna Sergio Focardi al TEDx di Bologna lo scorso ottobre. Con sottotitoli in inglese e in italiano.


Enhanced by Zemanta

08 novembre 2011

Libertà Morfologica Pratica: un medico offre un trattamento laser che per rendere permanentemente blu gli occhi


Enhanced by Zemanta

TEDxBologna - Sergio Focardi - L'E-cat e la fusione nucleare con il Nichel e l'Idrogeno

The following Transcription and Translation of “TEDxBologna - Sergio Focardi - L'E-cat e la fusione nucleare con il Nichel e l'Idrogeno “ is released under Public Domain by its author Mirco Romanato its author.
Anything wrong in the transcription and in the translation is my fault.

00:24 The talk I want to do, I'm starting from the origin, is about what today is called Cold Fusion.
00:30 It started around 22 years ago when an American researcher, an American chemist, stated to have produced energy using a nuclear fusion process obtained using Palladium, a metal, and Deuterium, a heavy Hydrogen.
01:00 After this, many started to work on his path, and after 22 years they have not obtained big results.
01:11 For what regard me, with a friend of the Siena University, decided to work in the same way but using Hydrogen and Nickel and obtained a number of results: production of energy by interactions between Hydrogen and Nickel
01:30 Following this I restarted the work with the Engineer Rossi and we started to work on the same path: building system able to produce energy using hydrogen and nickel
01:54 Now, what we can see are the results of this work.
02:07 There are, this is the first picture, this is one of the first experiments done with Engineer Rossi
02:20 And you can see, at right, there is a small red bucket, containing water and some materials and left the hydrogen canister used to put hydrogen inside this capsule where we had put the nickel.
02:50 Heating together nickel and hydrogen we obtained energy and, as result the heating of the water.
02:58 The experiment is, obviously, very crude, because it was not worth, for this experiment to build more refined objects.
03:10 This is the next experiment. This time, instead of the bucket of water, there is that donut-like object to the right where some water circulated and there was the capsule containing nickel and hydrogen.
03:35 The tube you see at the lower right is to bring hydrogen, at the center there is a canister of hydrogen, and in this way we obtained a confirmation about the previous experiment with a cleaner
system than the previous.
03:53 The third picture, it is another, third, method to measure. This time there is a closed circuit. You are able to see well, in the background at the right, the tube, where is inserted the cylinder, again at the right. In the tube some water was circulated. In this cylinder happen this heating process and it is a nuclear reaction between nickel and hydrogen
04:30 and what we observed experimentally was the difference of temperature between the two extremes of the cylinder
04:37 So, the three experiments confirmed that the system was really able to produce energy under the form of heat. We obtained the heating of the water.
05:00 This it was one of the latter objects built by the Engineer Rossi, that take the name of e-cat, where “cat” is a shorthand for catalyzer, that is used usually and currently, to experiment with the reaction between nickel and hydrogen and produce heat. And the heat produced is demonstrated heating water with various devices and this is one example.
05:50 Now, this is the next product built by Engineer Rossi, again based to the same process, similar to a train wagon (NdR a shipping container) but smaller. Inside we see some boxes and everyone is a generator producing the same effects I described before.
06:31 making work together all these elements, we would have 1 MW of power produced
06:45 This was not already started with all the generators together; it will be before the end of this month. At this time we can say there is a change in the sizes we are talking about. But every box we can see is like the old generators we used to react hydrogen and nickel to obtain heat.
07:17 This is clearly a nuclear reaction as in the experiments we did – we are doing them by two years, two years and half, I don't remember the exact date we started. At the end of the experiment, when we analyze the materials used, the material put in the capsule, that originally was nickel and hydrogen we find again nickel but also copper.
07:57 Now, the copper is the element following nickel on the periodic scale. It is at its side and the nucleus of copper differ from the nucleus of nickel only because it have a single proton more. Proton that was introduced, captured, by the nickel in a process of nuclear reaction. So when we affirm this is a nuclear reaction between nickel and hydrogen, this is another proof it is not a fantastic statement. We have the proofs, because as result in the end copper is formed.
08:43 Now, one of the problems when we talk about these topics is the problem of safety. And, in this case the danger for the safety is the radioactivity, because being a nuclear reaction people foresee radioactivity emitted in the reaction. This is real, but we are lucky this process produce only gamma rays and not neutrons. I must say I pointed to the danger of neutrons from the start with the collaboration with Rossi; and Rossi, obviously, took the measures needed because, if there would be neutrons, the things would be difficult, because neutrons can be shielded but it is not a simple problem. Luckily there are not neutrons. But there are gamma rays. The presence of gamma ray I have experienced directly, in the first experiments in the laboratory Rossi had in Bondeno, because often I did the measures when Rossi was occupied doing his bidding. I, in the first measures used an instrument detecting radioactivity and measured the gamma rays. Not very dangerous, not big compared to the normal background, but anyway present. And it is obvious there was no reason to raise the natural radioactivity level.
10:40 But we never detected neutrons as this was my main fear because neutron are difficult to shield. But hey never showed. The problem of the gamma rays was solved simply adding, around the generators, small sheet of lead that are able to shield the gamma ray. So we can say, there is no risk of radioactivity when we work in this way. This is good not only for us but for when there will be commercial applications.




Enhanced by Zemanta

Archivio